The Formal Derivation of Mode Logic for Autonomous Satellite Flight Formation
نویسندگان
چکیده
Satellite formation flying is an example of an autonomous distributed system that relies on complex coordinated mode transitions to accomplish its mission. While the technology promises significant economical and scientific benefits, it also poses a major verification challenge since testing the system on the ground is impossible. In this paper, we experiment with formal modelling and proof-based verification to derive mode logic for autonomous flight formation. We rely on refinement in Event-B and proof-based verification to create a detailed specification of the autonomic actions implementing the coordinated mode transitions. By decomposing system-level model, we derive the interfaces of the satellites and guarantee that their communication supports correct mode transitions despite unreliability of the communication channel. We argue that a formal systems approach advocated in this paper constitutes a solid basis for designing complex autonomic systems.
منابع مشابه
Robust Integral Sliding-Mode Control of an Aerospace Launch Vehicle
An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملFuzzy Sliding Mode for Spacecraft Formation Control in Eccentric Orbits
The problem of relative motion control for spacecraft formation flying in eccentric orbits is considered in this paper. Due to the presence of nonlinear dynamics and external disturbances, a robust fuzzy sliding mode controller is developed. The slopes of sliding surfaces of the conventional sliding mode controller are tuned according to error states using a fuzzy logic and reach the pre-define...
متن کاملA Distributed Flight Software Design for Satellite Formation Flying Control
Several NASA and DoD missions are envisioned that will utilize distributed, autonomous clusters of spacecraft. The Air Force Research Laboratory initiated the TechSat 21 mission to demonstrate the key enabling technologies of formation flying and distributed radar. Princeton Satellite Systems developed the Formation Flying Module (FFM) for TechSat 21 to provide autonomous reconfiguration, forma...
متن کاملF/A-18 Performance Benefits Measured During the Autonomous Formation Flight Project
The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wingtip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane ...
متن کامل